隨著材料領(lǐng)域的擴(kuò)張,人們對于材料的功能性需求更為嚴(yán)苛,迫切需要在交通運(yùn)輸、建筑材料、能量存儲與轉(zhuǎn)化等領(lǐng)域應(yīng)用性質(zhì)更加優(yōu)良的材料出現(xiàn),石墨烯以優(yōu)異的聲、光、熱、電、力等性質(zhì)成為各新型材料領(lǐng)域追求的目標(biāo),作為前驅(qū)體的GO以其靈活的物理化學(xué)性質(zhì)、可規(guī)模化制備的特點(diǎn)更成為應(yīng)用基礎(chǔ)研究的熱電。雖然GO具有諸多特性,但是由于范德華作用以及π-π作用等強(qiáng)相互作用力,使GO之間很容易在不同體系中發(fā)生團(tuán)聚,其在納米尺度上表現(xiàn)的優(yōu)異性能隨著GO片層的聚集***的降低直至消失,極大地阻礙了GO的進(jìn)一步應(yīng)用。GO表面的各種官能團(tuán)使其可與生物分子直接相互作用,易于化學(xué)修飾。多層氧化石墨納米材料
使得*在單層中排列的水蒸氣可以滲透通過納米通道。通過在GO納米片之間夾入適當(dāng)尺寸的間隔物來調(diào)節(jié)GO間距,可以制造廣譜的GO膜,每個(gè)膜能夠精確地分離特定尺寸范圍內(nèi)的目標(biāo)離子和分子。水合作用力使得溶液中氧化石墨烯片層間隙的距離增大到1.3nm,真正有效、可自由通過的孔道尺寸為0.9nm,計(jì)算出水合半徑小于0.45nm的物質(zhì)可以通過氧化石墨烯膜片,而水合半徑大于0.45nm的物質(zhì)被截留,如圖8.4所示。例如,脫鹽要求GO的層間距小于0.7nm,以從水中篩分水合Na+(水合半徑為0.36nm)。通過部分還原GO以減小水合官能團(tuán)的尺寸或通過將堆疊的GO納米片與小尺寸分子共價(jià)鍵合以克服水合力,可以獲得這種小間距。與此相反,如果要擴(kuò)大GO的層間距至1~2nm,可在GO納米片之間插入剛性較大的化學(xué)基團(tuán)或聚合物鏈(例如聚電解質(zhì)),從而使GO膜成為水凈化、廢水回收、制藥和燃料分離等應(yīng)用的理想選擇。如果使用更大尺寸的納米顆?;蚣{米纖維作為插層物,可以制備出間距超過2nm的GO膜,以用于生物醫(yī)學(xué)應(yīng)用(例如人工腎和透析),這些應(yīng)用需要大面積預(yù)分離生物分子和小廢物分子。呼和浩特綠色氧化石墨氧化石墨片層的邊緣包括羰基或羧基。
由于GO表面具有較高的親和力,蛋白質(zhì)可以吸附在GO表面,因此在生物液體中可以通過蛋白質(zhì)來調(diào)節(jié)GO與細(xì)胞膜的相互作用。如,血液中存在著大量的血清蛋白,可能會(huì)潛在的影響GO的毒性。Ge與其合作者[16]利用電子顯微鏡技術(shù)就觀察到牛血清蛋白可以降低GO對細(xì)胞膜的滲透性,抑制了GO對細(xì)胞膜的破壞,同時(shí)降低了GO的細(xì)胞毒性?;诜肿觿?dòng)力學(xué)研究分析,他們推斷可能是由于GO-蛋白質(zhì)之間的作用削弱了GO-磷脂之間的相互作用。與此同時(shí),GO對人血清蛋白的影響也被其他科研工作者所發(fā)現(xiàn),特別是他們觀察到了GO可以抑制人血清蛋白與膽紅素之間的作用。因此,GO與血清蛋白之間是相互影響的。
近年來研究者發(fā)現(xiàn)石墨烯由于它獨(dú)特的零帶隙結(jié)構(gòu),對所有波段的光都無選擇性的吸收,且具有超快的恢復(fù)時(shí)間和較高的損傷閾值。因此利用石墨烯獨(dú)特的非線性可飽和吸收特性將其制作成可飽和吸收體應(yīng)用于調(diào)Q摻鉺光纖激光器、被動(dòng)鎖模光纖激光器已經(jīng)成為超快脈沖激光器研究領(lǐng)域的熱點(diǎn)。2009年,Bao等[82]人使用單層石墨烯作為鎖模光纖激光器的可飽和吸收體首先實(shí)現(xiàn)了通信波段的超短孤子脈沖輸出,脈沖寬度達(dá)到了756fs。他們證實(shí)了由于泡利阻塞原理,零帶隙材料石墨烯在強(qiáng)激光激發(fā)下可以容易的實(shí)現(xiàn)可飽和吸收,而且這種可飽和吸收是與頻率不相關(guān)的,即石墨烯作為可飽和吸收體可實(shí)現(xiàn)對所有波長的光都有可飽和吸收作用。與石墨烯量子點(diǎn)類似,氧化石墨烯量子點(diǎn)也具備一些特殊的性質(zhì)。
太赫茲技術(shù)可用于醫(yī)學(xué)診斷與成像、反恐安全檢查、通信雷達(dá)、射電天文等領(lǐng)域,將對技術(shù)創(chuàng)新、國民經(jīng)濟(jì)發(fā)展以及**等領(lǐng)域產(chǎn)生深遠(yuǎn)的影響。作為極具發(fā)展?jié)摿Φ男录夹g(shù),2004年,美國**將THz科技評為“改變未來世界的**技術(shù)”之一,而日本于2005年1月8日更是將THz技術(shù)列為“國家支柱**重點(diǎn)戰(zhàn)略目標(biāo)”**,舉全國之力進(jìn)行研發(fā)。傳統(tǒng)的寬帶THz波可以通過光整流、光電導(dǎo)天線、激光氣體等離子體等方法產(chǎn)生,窄帶THz波可以通過太赫茲激光器、光學(xué)混頻、加速電子、光參量轉(zhuǎn)換等方法產(chǎn)生。在用氧化還原法將石墨剝離為石墨烯的工業(yè)化生產(chǎn)過程中,得到的石墨烯微片富含多種含氧官能團(tuán)。無污染氧化石墨有哪些
氧化石墨中存在大量親水基團(tuán)(如羧基與羥基),在水溶液中容易分散。多層氧化石墨納米材料
GO作為一種新型的藥物載體材料,以其良好的生物相容性、較高的載藥率、靶向給藥等方面得到廣泛的關(guān)注。GO作為遞送藥物的載體,它不僅可以負(fù)載小分子藥物,也可以與抗體、DNA、蛋白質(zhì)等大分子結(jié)合,如圖7.2所示。普通的有機(jī)藥物很多都含有π結(jié)構(gòu),而這些藥物的水溶性都非常差,而GO具有較好的親水性,因此可以借助分散性較好的GO基材料來解決這個(gè)問題,即將上述藥物負(fù)載到GO基材料上,形成GO-藥物混合物材料。這對改善難溶***物的水溶性,降低藥物不良反應(yīng)以及提高藥物穩(wěn)定性和生物利用度等方面有非常重要的研究意義。多層氧化石墨納米材料