高阻封接問(wèn)題的解決不僅改善了電流記錄性能,還隨之出現(xiàn)了研究通道電流的多種膜片鉗方式。根據(jù)不同的研究目的,可制成不同的膜片構(gòu)型。細(xì)胞吸附膜片(cell-attachedpatch)將兩次拉制后經(jīng)加熱拋光的微管電極置于清潔的細(xì)胞膜表面上,形成高阻封接,在細(xì)胞膜表面隔離出一小片膜,既而通過(guò)微管電極對(duì)膜片進(jìn)行電壓鉗制,分辨測(cè)量膜電流,稱(chēng)為細(xì)胞貼附膜片。由于不破壞細(xì)胞的完整性,這種方式又稱(chēng)為細(xì)胞膜上的膜片記錄。此時(shí)跨膜電位由玻管固定電位和細(xì)胞電位決定。因此,為測(cè)定膜片兩側(cè)的電位,需測(cè)定細(xì)胞膜電位并從該電位減去玻管電位。從膜片的通道活動(dòng)看,這種形式的膜片是極穩(wěn)定的,因細(xì)胞骨架及有關(guān)代謝過(guò)程是完整的,所受的干擾小。膜片鉗的設(shè)計(jì)使得夾持力均勻,不會(huì)損壞薄片材料。德國(guó)雙分子層膜片鉗系統(tǒng)
1937年,Hodgkin和Huxley在烏賊巨大神經(jīng)軸突細(xì)胞內(nèi)實(shí)現(xiàn)細(xì)胞內(nèi)電記錄,獲1963年Nobel獎(jiǎng)1946年,凌寧和Gerard創(chuàng)造拉制出前列直徑小于1μm的玻璃微電極,并記錄了骨骼肌的電活動(dòng)。玻璃微電極的應(yīng)用使的電生理研究進(jìn)行了重命性的變化。Voltageclamp(電壓鉗技術(shù))由Cole和Marmont發(fā)明,并很快由Hodgkin和Huxley完善,真正開(kāi)始了定量研究,建立了H一H模型(膜離子學(xué)說(shuō)),是近代興奮學(xué)說(shuō)的基石。1948年,Katz利用細(xì)胞內(nèi)微電極技術(shù)記錄到了終板電位;1969年,又證實(shí)N—M接觸后的Ach以"量子式"釋放,獲1976年Nobel獎(jiǎng)。1976年,德國(guó)的Neher和Sakmann發(fā)明PatchClamp(膜片鉗)。并在蛙橫紋肌終板部位記錄到乙酰膽堿引起的通道電流。滔博生物TOP-Bright專(zhuān)注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專(zhuān)業(yè)團(tuán)隊(duì),7*42小時(shí)隨時(shí)人工在線咨詢(xún).進(jìn)口多通道膜片鉗市場(chǎng)價(jià)神經(jīng)遞質(zhì)的釋放、腺體的分泌、肌肉的運(yùn)動(dòng)、學(xué)習(xí)和記憶。
膜片鉗技術(shù)原理:膜片鉗技術(shù)是用玻璃微電極吸管把只含1-3個(gè)離子通道、面積為幾個(gè)平方微米的細(xì)胞膜通過(guò)負(fù)壓吸引封接起來(lái)(見(jiàn)右圖),由于電極前列與細(xì)胞膜的高阻封接,在電極前列籠罩下的那片膜事實(shí)上與膜的其他部分從電學(xué)上隔離,因此,此片膜內(nèi)開(kāi)放所產(chǎn)生的電流流進(jìn)玻璃吸管,用一個(gè)極為敏感的電流監(jiān)視器(膜片鉗放大器)測(cè)量此電流強(qiáng)度,就單一離子通道電流膜片鉗技術(shù)的建立,對(duì)生物學(xué)科學(xué)特別是神經(jīng)科學(xué)是一資有重大意義的變革。這是一種以記錄通過(guò)離子通道的離子電流來(lái)反映細(xì)胞膜單一的(或多個(gè)的離子通道分子活動(dòng)的技術(shù)。滔博生物TOP-Bright專(zhuān)注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專(zhuān)業(yè)團(tuán)隊(duì),7*30小時(shí)隨時(shí)人工在線咨詢(xún).
對(duì)單細(xì)胞形態(tài)與功能關(guān)系的研究,將膜片鉗技術(shù)與單細(xì)胞逆轉(zhuǎn)錄多聚酶鏈?zhǔn)欠磻?yīng)技術(shù)結(jié)合,在全細(xì)胞膜片鉗記錄下,將單細(xì)胞內(nèi)容物或整個(gè)細(xì)胞(包括細(xì)胞膜)吸入電極中,將細(xì)胞內(nèi)存在的各種mRNA全部快速逆轉(zhuǎn)錄成cDNA,再經(jīng)常規(guī)PCR擴(kuò)增及待檢的特異mRNA的檢測(cè),借此可對(duì)形態(tài)相似而電活動(dòng)不同的結(jié)果做出分子水平的解釋或?yàn)閱渭?xì)胞逆轉(zhuǎn)錄多聚酶鏈?zhǔn)椒磻?yīng)提供標(biāo)本,為同一結(jié)構(gòu)中形態(tài)非常相似但功能不同的事實(shí)提供分子水平的解釋。目前國(guó)際上掌握此技術(shù)的實(shí)驗(yàn)室較少,我國(guó)北京大學(xué)神經(jīng)科學(xué)研究所于1994年在國(guó)內(nèi)率先開(kāi)展。膜片鉗技術(shù)的建立,對(duì)生物學(xué)科學(xué)特別是神經(jīng)科學(xué)是一資有重大意義的變革。
在心血管藥理研究中的應(yīng)用,隨著膜片鉗技術(shù)在心血管方面的廣泛應(yīng)用,對(duì)血管疾病和藥物作用的認(rèn)識(shí)不僅得到了不斷更新,而且在其病因?qū)W與藥理學(xué)方面還形成了許多新的觀點(diǎn)。正如諾貝爾基金會(huì)在頒獎(jiǎng)時(shí)所說(shuō):“Neher和Sadmann的貢獻(xiàn)有利于了解不同疾病機(jī)理,為研制新的更為的藥物開(kāi)辟了道路”。目前在離子通道高通量篩選中主要是進(jìn)行樣品量大、篩選速度占優(yōu)勢(shì)、信息量要求不太高的初級(jí)篩選。近幾年,分別形成了以膜片鉗和熒光探針為基礎(chǔ)的兩大主流技術(shù)市場(chǎng)。將電生理研究信息量大、靈敏度高等特點(diǎn)與自動(dòng)化、微量化技術(shù)相結(jié)合,產(chǎn)生了自動(dòng)化膜片鉗等一些新技術(shù)。滔博生物TOP-Bright專(zhuān)注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專(zhuān)業(yè)團(tuán)隊(duì),7*52小時(shí)隨時(shí)人工在線咨詢(xún).屯流鉗素向細(xì)胞內(nèi)注入刺激電流,記錄膜電位對(duì)刺激電流的反應(yīng)。進(jìn)口腦片膜片鉗系統(tǒng)
膜片鉗通常由兩個(gè)平行的、彎曲的鉗臂組成,鉗臂的末端有一對(duì)夾持墊,可以?shī)A住薄片材料。德國(guó)雙分子層膜片鉗系統(tǒng)
電壓鉗技術(shù)是由科爾發(fā)明的,并在20世紀(jì)初由霍奇金和赫胥黎完善。其設(shè)計(jì)的主要目的是證明動(dòng)作電位的產(chǎn)生機(jī)制,即動(dòng)作電位的峰值電位是由于膜對(duì)鈉的通透性瞬間增加。但當(dāng)時(shí)還沒(méi)有直接測(cè)量膜通透性的方法,所以用膜電導(dǎo)來(lái)測(cè)量離子通透性。膜電導(dǎo)測(cè)量的基礎(chǔ)是電學(xué)中的歐姆定律,如膜Na電導(dǎo)GNa與電化學(xué)驅(qū)動(dòng)力(Em-ENa)的關(guān)系,膜電流INaGNa=INa/(Em-ENa)。因此,可以通過(guò)測(cè)量膜電流,然后利用歐姆定律來(lái)計(jì)算膜電導(dǎo)。然而,膜電導(dǎo)可以通過(guò)使用膜電流來(lái)計(jì)算。這個(gè)條件是通過(guò)電壓鉗技術(shù)實(shí)現(xiàn)的。下一張幻燈片中右邊的兩張圖顯示了squid的動(dòng)作電位和動(dòng)作電位過(guò)程中膜電流的變化,這是霍奇金和赫胥黎在半個(gè)世紀(jì)前用電壓鉗記錄的。他們的實(shí)驗(yàn)證明了參與動(dòng)作電位的離子電流由三種成分組成:Na、K、Cl。對(duì)這些離子流進(jìn)行了定量分析。這項(xiàng)技術(shù)為闡明動(dòng)作電位的本質(zhì)和離子通道的研究做出了巨大貢獻(xiàn)。德國(guó)雙分子層膜片鉗系統(tǒng)