氣液反應的速率和轉化率等往往取決于氣液兩相的接觸面積。這兩類氣液相反應器氣液相接觸面積都非常大,其內表面積均接近20000m2/m3,比傳統(tǒng)的氣液相反應器大一個數(shù)量級?!皠?chuàng)闊科技”“創(chuàng)闊科技”氣液固三相反應在化學反應中也比較常見,種類較多,在大多數(shù)情況下固體為催化劑,氣體和液體為反應物或產物,美國麻省理工學院發(fā)展了一種用于氣液固三相催化反應的微填充床反應器,其結構類似于固定床反應器,在反應室(微通道)中填充了催化劑固定顆粒,氣相和液相被分成若干流股,再經管匯到反應室中混合進行催化反應。麻省理工學院還嘗試對該微反應器進行“放大”,將10個微填充床反應器并聯(lián)在一起,在維持產量不變的情況下,大大減小...
創(chuàng)闊科技的微通道換熱器是一種采用特殊微加工技術制造的換熱器。當量水力直徑通常小于1mm。該換熱器的特點是單位體積換熱量大,耐高壓,制造難度大。在微通道設計中,如果當量直徑過小時,可能需要關注微尺度效應。此時,傳統(tǒng)的宏觀理論公式不再適用于流動和傳熱。,我們將使用FLUENT制作一個簡單的微通道換熱器案例。當然,微通道換熱器的當量直徑足以通過解決NS方程來模擬。2模型和網(wǎng)格。由于實際換熱器單元較多,流道數(shù)量較大,本案按對稱面截取部分計算。換熱器長度60mm,寬度6mm,微通道高度mm,寬度1mm(當量直徑mm)。全六面網(wǎng)格劃分如下。網(wǎng)格節(jié)點總數(shù)為691096。3求解設置在這種情況下,我們假設介質在...
中國已經確立了要在2060年實現(xiàn)碳中和的目標,未來幾十年氫能可以在綠色能源結構中占據(jù)重要的一席地位。而創(chuàng)闊能源科技在這重大目標中來開發(fā)研究氫能的使用。中國是世界大產氫國,但是我國的國情是富煤缺油少氣,我國的制氫方式大多數(shù)并非通過天然氣重整制氫,而是通過煤制氫的方式取得,使用煤制氫擁有明顯的低成本特色。但如果堅持使用化石能源作為原料的話還會產生新的污染和耗能的問題,也是一種不可持續(xù)的方式。另外在制氫生產工藝上存在技術落后,設備需要從國外引進,制氫成本高昂,原料來源單一。從全世界范圍來看,一場氫能已經在發(fā)達國家如美國、德國和日本開啟,他們已經在包括氫的生產、儲存、運輸和利用上采用公私合作的方式有效...
通過各向異性的蝕刻過程可完成加工新型換熱器,使用夾層和堆砌技術可制造出各種結構和尺寸,如通道為角錐結構的換熱器。大尺度微通道換熱器形成微通道規(guī)?;纳a技術主要是受擠壓技術,受壓力加工技術所限,可選用的材料也極為有限,主要為鋁及鋁合金微通道加工方式隨著微加工技術的提高,可以加工出流道深度范圍為幾微米至幾百微米的高效微型換熱器。此類微加工技術包括:平板印刷術、化學刻蝕技術、光刻電鑄注塑技術(LIGA)、鉆石切削技術、線切割及離子束加工技術等。燒結網(wǎng)式多孔微型換熱器采用粉末冶金方式制作。大尺度下微通道的加工與微尺度下微通道的加工方式略有不同,前者需要更高效的加工制造技術。微通道應用前景及優(yōu)勢編輯微...
微結構反應器(簡稱微反應器)是重要的微化工設備之一,是實現(xiàn)化工過程微小型化的裝備。在微化工過程中微反應器擔負起了完成反應過程、提高反應收率、控制產物形貌以及提升過程安分離回收難度和成本、減少過程污染等具有重要的意義。針對不同過程特點開發(fā)出的微反應器不僅形式多樣,其配套的工藝技術也與傳統(tǒng)化工過程存在一定區(qū)別,利用集成化的微反應系統(tǒng)可以實現(xiàn)過程的耦合,因此微反應技術的發(fā)展也同時帶動了化工工藝的進步。微反應器起源于20世紀90年代,21世紀初葉是微尺度反應技術的快速發(fā)展期。創(chuàng)闊科技也在基礎研究方面,隨著對微尺度多相流動、分散、聚并研究的不斷深入,微反應器內多相流型,分散尺度調控機制以及微分散體系的大...
創(chuàng)闊科技一直致力于開發(fā)研究直接接觸式換熱器,也叫混合式換熱器,是冷熱流體進行直接接觸并換熱的設備。通常情況下,直接接觸的兩種流體是氣體和汽化壓力較低的液體;蓄能式換熱器的工作原理,是利用固體物質的導熱特性,具體而言,熱介質先將固體物質加熱到一定溫度,冷介質再從固體物質獲得熱量,通過此過程可實現(xiàn)熱量的傳遞;間壁式換熱器,也是利用了中介物的熱傳導,冷、熱兩種介質被固體間壁隔開,并通過間壁進行熱量交換。對于供熱企業(yè)而言,間壁式換熱器的應用為。根據(jù)結構的不同,它還可劃分為管式換熱器、板式換熱器和熱管換熱器。換熱器是將熱流體的部分熱量傳遞給冷流體的設備,又稱熱交換器。按傳熱原理換熱器分為間壁式換熱器、蓄...
創(chuàng)闊科技微通道是微型設備的關鍵部位。為了滿足高效傳熱、傳質和化學反應的要求,必須實現(xiàn)高性能機械表面的加工制造,其中包括金屬材料制造各種異形微槽道的技術,金屬表面制造催化劑載體的技術等。常規(guī)微系統(tǒng)微通道的加工制造技術主要有以下4大類:(1)IC技術:從大規(guī)模集成電路(IC工藝)發(fā)展起來的平面加工工藝和體加工工藝,所使用的材料以單晶硅及在其上形成微米級厚的薄膜為主,通過氧化、化學氣相沉積、濺射等方法形成薄膜;再通過光刻、腐蝕特別是各向異性腐蝕、層腐蝕等方法形成各種形狀的微型機械。雖然IC工藝的成熟性決定了它目前在微機械領域中的主導地位,但這種表面微加工技術適合于硅材料,并限于平面結構,厚度很薄,限...
創(chuàng)闊科技的微通道尺寸小,流體在微通道中的流動為層流狀態(tài),為了在層流狀態(tài)下提高微混合器的混合效果,實現(xiàn)快速混合,學者們設計出了許多微混合器的結構。依據(jù)有無外力的加人將微混合器,分為主動型微混合器與被動型微混合器。主動型微混合器需要外界的能量加人以誘導混合的發(fā)生,如磁場、電動力、超聲波等。與主動型微混合器需要加人外界能量不同,被動型微混合器依靠自身的幾何結構來促進混合。被動型微混合器又可以分為T型、分流型、混沌型等。T型微混合器結構簡單,但無法提供很大的流體間接觸面積。分流型微混合器將待混合流體分成許多薄層,薄層間相互接觸,增大流體間接觸面積促進混合。本文所研究的內交叉指型微混合器為分流型微混合器...
創(chuàng)闊金屬微通道換熱器有哪些選用材料?在這里,創(chuàng)闊金屬也整理了一下詳細的資料,來為大家闡述一下微通道換熱器的選用材料。微型微通道換熱器可選用的材料有:聚甲基丙烯酸甲酯、鎳、銅、不銹鋼、陶瓷、硅、Si3N4和鋁等。采用鎳材料的微通道換熱器,單位體積的傳熱性能比相應聚合體材料的換熱器高5倍多,單位質量的傳熱性能也提高了50%。采用銅材料,可將金屬板材加工成小而光滑的流體通道,且可精確掌握翅片尺寸和平板厚度,達到幾十微米級,經釬焊形成平板錯流式結構,傳熱系數(shù)可達45MW/(m3·K),是傳統(tǒng)緊湊式換熱器的20倍。采用硅、Si3N4等材料可制造結構更為復雜的多層結構,通過各向異性的蝕刻過程可完成加工新型...
創(chuàng)闊科技介紹微通道熱交換器作為熱管理系統(tǒng)關鍵裝備,小型化(緊湊化)、換熱效率高效化是當前該領域的主流發(fā)展方向,其使役性能方面的要求也日益嚴苛。這直接導致了熱交換器裝備在用材、加工、制造工藝等方面面臨極大的挑戰(zhàn)。以列管式換熱器為例,對于薄壁或超薄壁的換熱管,無論是釬焊還是熔化焊,換熱管極易發(fā)生溶蝕和燒穿。但難焊并不不能焊。通過焊接材料成分體系的科學設計、焊接工藝制度的不斷優(yōu)化,超薄壁換熱管的焊接難題可以得到有效的解決。微通道換熱器再以平板式換熱器為例。現(xiàn)階段,平板式換熱器制造工藝以釬焊和擴散焊兩種工藝路線為主。釬焊方法因為服役環(huán)境對釬料的限制而存在很大的局限性,而真空擴散焊方法則可以有效地避免這...
且中間混合腔室的右側設置有后腔混合室,所述第二主流道設置在后腔混合室的右側,且第二主流道的右側設置有第二前腔混合室,所述第二前腔混合室的右側設置有第二分流道路,且第二分流道路的右側設置有第二中間混合腔室。推薦的,所述主流道的內部尺寸小于等于兩倍分流道路的內部尺寸,且分流道路關于主流道的中心軸對稱布置有兩組。推薦的,所述中間混合腔室關于后腔混合室的中心軸對稱布置有兩組,且后腔混合室與前腔混合室之間為對稱布置。推薦的,所述第二主流道的形狀和尺寸與主流道的形狀和尺寸均相吻合,且第二主流道與主流道之間為對稱設置。推薦的,所述第二分流道路為傾斜式結構設置,且第二分流道路與分流道路的數(shù)量相吻合。推薦的,所...
創(chuàng)闊科技微通道是微型設備的關鍵部位。為了滿足高效傳熱、傳質和化學反應的要求,必須實現(xiàn)高性能機械表面的加工制造,其中包括金屬材料制造各種異形微槽道的技術,金屬表面制造催化劑載體的技術等。常規(guī)微系統(tǒng)微通道的加工制造技術主要有以下4大類:(1)IC技術:從大規(guī)模集成電路(IC工藝)發(fā)展起來的平面加工工藝和體加工工藝,所使用的材料以單晶硅及在其上形成微米級厚的薄膜為主,通過氧化、化學氣相沉積、濺射等方法形成薄膜;再通過光刻、腐蝕特別是各向異性腐蝕、層腐蝕等方法形成各種形狀的微型機械。雖然IC工藝的成熟性決定了它目前在微機械領域中的主導地位,但這種表面微加工技術適合于硅材料,并限于平面結構,厚度很薄,限...
真空擴散焊產品介紹產品名稱:真空擴散焊材料材質:陶瓷和可伐合金、銅、鈦、玻璃和可伐合金;黃金和青銅;鉑和鈦;銀和不銹鋼;鈮和陶瓷、鑰;鋼和鑄鐵、鋁、鎢、鈦、金屑陶瓷、錫;銅和鋁、鈦;青銅和各種金屬以及非金屬材料等等。材料厚度(公制):真空擴散焊的材料厚度通常是采用。產品用途:擴散焊已用于反應堆燃料元件、蜂窩結構板、靜電加速管、各種葉片、葉輪、沖模、換熱器流道板片、深孔加工、工裝治具、鍍膜夾具、電子元件、五金配件、模具冷卻等的制造。產品價格:真空擴散焊的價格通常是以材料的厚度、產品管控精度要求、量產數(shù)量等等因素來進行綜合核定評估的,一般批量越大價格越優(yōu)惠。焊接加工能力:創(chuàng)闊金屬公司擁有先進的真空...
創(chuàng)闊能源制作的微化工反應器,有著良好的可操作性:微反應器是密閉的微管式反應器,在高效微換熱器的配合下實現(xiàn)精確的溫度控制,它的制作材料可以是各種度耐腐蝕材料,因此可以輕松實現(xiàn)高溫、低溫、高壓反應。另外,由于是連續(xù)流動反應,雖然反應器體積很小,產量卻完全可以達到常規(guī)反應器的水平。對放熱劇烈的反應,常規(guī)反應器一般采用逐漸滴加的方式,即使這樣,在滴加的瞬時局部也會過熱而產生一定量的副產物。微反應器由于能夠及時導出熱量,反應溫度可實現(xiàn)精確控制,因此消除了局部過熱,顯著提高反應的收率和選擇性。高效微通道反應器加工聯(lián)系創(chuàng)闊金屬科技。緊湊型多結構微通道換熱器技術指導微通道換熱器差不多同時發(fā)展了在組合化學、催化...
真空擴散焊接工藝目前應用于航空航天產品的焊接生產以及自動化工裝夾具的焊接生產等等。材料的擴散焊是以“物理純”表面的主要特性之一為根據(jù),真空擴散焊是在溫度和壓力下將各種待焊物質的焊接表面相互接觸,通過微觀塑性變形或通過焊接面產生微量液相而擴大待焊表面的物理接觸,使之距離離達(1~5)x10-8cm以內(這樣原子間的引力起作用,才可能形成金屬鍵),再經較長時間的原子相互間的不斷擴散,相互滲透,來實現(xiàn)冶金結合的一種焊接方法。該種表面由于開裂的原子鍵而具有“結合”能力。采用真空和其他凈化表面的方法之后,就有可能利用上述原子結合力,來連接兩個和兩個以上的表面,隨后表面上產生的擴散過程提高了這一連接的強度...
創(chuàng)闊科技制作的微化工反應器的特點,面積體積比的增大和體積的減小.在微反應設備內,由于減小了流體厚度,相應的面積體積比得到了的提高。通常微通道設備的比表面積可以達到10000-50000m2/m3,而常規(guī)實驗室或工業(yè)設備的比表面積不會超過l000m2/m3或100m2/m3。因此,比表面積的增加除了可以強化傳熱外,也可以強化反應過程,例如,高效率的氣相催化微反應器就可以采用在微通道內表面涂敷催化劑的結構。目前已有的界面積的微反應器為降膜式微反應器,其界面積可以達到25000m2/m3,而傳統(tǒng)鼓泡塔的界面積只能達到100m2/m3,即使采用噴射式對撞流的氣液接觸式反應器的比表面積也只能達到2000...
創(chuàng)闊科技介紹微通道熱交換器作為熱管理系統(tǒng)關鍵裝備,小型化(緊湊化)、換熱效率高效化是當前該領域的主流發(fā)展方向,其使役性能方面的要求也日益嚴苛。這直接導致了熱交換器裝備在用材、加工、制造工藝等方面面臨極大的挑戰(zhàn)。以列管式換熱器為例,對于薄壁或超薄壁的換熱管,無論是釬焊還是熔化焊,換熱管極易發(fā)生溶蝕和燒穿。但難焊并不不能焊。通過焊接材料成分體系的科學設計、焊接工藝制度的不斷優(yōu)化,超薄壁換熱管的焊接難題可以得到有效的解決。微通道換熱器再以平板式換熱器為例?,F(xiàn)階段,平板式換熱器制造工藝以釬焊和擴散焊兩種工藝路線為主。釬焊方法因為服役環(huán)境對釬料的限制而存在很大的局限性,而真空擴散焊方法則可以有效地避免這...
創(chuàng)闊金屬微通道換熱器有哪些選用材料?在這里,創(chuàng)闊金屬也整理了一下詳細的資料,來為大家闡述一下微通道換熱器的選用材料。微型微通道換熱器可選用的材料有:聚甲基丙烯酸甲酯、鎳、銅、不銹鋼、陶瓷、硅、Si3N4和鋁等。采用鎳材料的微通道換熱器,單位體積的傳熱性能比相應聚合體材料的換熱器高5倍多,單位質量的傳熱性能也提高了50%。采用銅材料,可將金屬板材加工成小而光滑的流體通道,且可精確掌握翅片尺寸和平板厚度,達到幾十微米級,經釬焊形成平板錯流式結構,傳熱系數(shù)可達45MW/(m3·K),是傳統(tǒng)緊湊式換熱器的20倍。采用硅、Si3N4等材料可制造結構更為復雜的多層結構,通過各向異性的蝕刻過程可完成加工新型...
換熱器(heatexchanger),是將熱流體的部分熱量傳遞給冷流體的設備,又稱熱交換器。換熱器在化工、石油、動力、食品及其它許多工業(yè)生產中占有重要地位,其在化工生產中換熱器可作為加熱器、冷卻器、冷凝器、蒸發(fā)器和再沸器等,應用之廣。創(chuàng)闊科技在不斷的研發(fā)創(chuàng)新現(xiàn)已適用于不同介質、不同工況、不同溫度、不同壓力的換熱器,結構型式也不同,然而換熱器在石油、化工、輕工、制藥、能源等工業(yè)生產中,常常用作把低溫流體加熱或者把高溫流體冷卻,把液體汽化成蒸汽或者把蒸汽冷凝成液體。換熱器既可是一種單元設備,如加熱器、冷卻器和凝汽器等;也可是某一工藝設備的組成部分,如氨合成塔內的換熱器。換熱器是化工生產中重要的單元...
微通道換熱器早應用于電子領域,解決了集成電路中大規(guī)模的“熱障”問題,目前在制冷行業(yè)得到應用。微通道換熱器相比常規(guī)換熱器的優(yōu)勢有:1)換熱效率高;2)熱響應速率高,可控性好;3)噪聲小,運行穩(wěn)定;4)承壓能力好;5)抗腐蝕;6)節(jié)約成本,相同換熱要求下材料消耗小。目前對于微通道換熱器空氣側流動及換熱性能的研究,主要是考慮空氣流速對換熱性能的影響,或者考慮翅片的間距和結構尺寸對于換熱性能的影響,沒有從翅片開窗角度和翅片開窗數(shù)2個方面結合研究翅片對于微通道換熱器換熱性能的影響。創(chuàng)闊能源科技團隊研究計算流體力學方法對不同開窗角度和開窗數(shù)目的微通道換熱器空氣側流動及換熱進行分析,對比翅片結構參數(shù)對換熱和...
創(chuàng)闊科技一直致力于開發(fā)研究直接接觸式換熱器,也叫混合式換熱器,是冷熱流體進行直接接觸并換熱的設備。通常情況下,直接接觸的兩種流體是氣體和汽化壓力較低的液體;蓄能式換熱器的工作原理,是利用固體物質的導熱特性,具體而言,熱介質先將固體物質加熱到一定溫度,冷介質再從固體物質獲得熱量,通過此過程可實現(xiàn)熱量的傳遞;間壁式換熱器,也是利用了中介物的熱傳導,冷、熱兩種介質被固體間壁隔開,并通過間壁進行熱量交換。對于供熱企業(yè)而言,間壁式換熱器的應用為。根據(jù)結構的不同,它還可劃分為管式換熱器、板式換熱器和熱管換熱器。換熱器是將熱流體的部分熱量傳遞給冷流體的設備,又稱熱交換器。按傳熱原理換熱器分為間壁式換熱器、蓄...
微通道換熱器的工程背景來源于上個世紀80年代高密度電子器件的冷卻和90年代出現(xiàn)的微電子機械系統(tǒng)的傳熱問題。換熱器工質通過的水力學直徑從管片式的10~50mm,板式的3~10mm,不斷發(fā)展到小通道的μm,這既是現(xiàn)代微電子機械快速發(fā)展對傳熱的現(xiàn)實需求,也是微通道具有的優(yōu)良傳熱特性使然。微通道技術同時觸發(fā)了傳統(tǒng)工業(yè)制冷、汽車空調、家用空調等領域提高效率、降低排放的技術革新。微通道換熱器由集流管、多孔扁管和波紋型百葉窗翅片組成。但扁管是每根截斷的,在扁管的兩端有集流管,根據(jù)集流管是否分段,可分為單元平流式和多元平流式。百葉窗式翅片具有切斷散熱器上氣體邊界層的發(fā)展,使邊界層在各表面不斷地破壞,在下一個沖...
創(chuàng)闊能源科技制作的微化工反應器的特點,對反應時間的精確控制:常規(guī)的單鍋反應,往往采用逐漸滴加反應物,以防止反應過于劇烈,這就造成一部分先加入的反應物停留時間過長。對于很多反應,反應物、產物或中間過渡態(tài)產物在反應條件下停留時間一長就會導致副產物的產生。而微反應器技術采取的是微管道中的連續(xù)流動反應,可以精確控制物料在反應條件下的停留時間。一旦達到比較好反應時間就立即傳遞到下一步或終止反應,這樣就能有效消除因反應時間長而產生的副產物。結構保證安全性:由于換熱效率極高,即使反應突然釋放大量熱量,也可以被吸收,從而保證反應溫度在設定范圍內,很大程度地減少了發(fā)生安全事故和質量事故的可能性。而且微反應器采用...
微通道換熱器早應用于電子領域,解決了集成電路中大規(guī)模的“熱障”問題,目前在制冷行業(yè)得到應用。微通道換熱器相比常規(guī)換熱器的優(yōu)勢有:1)換熱效率高;2)熱響應速率高,可控性好;3)噪聲小,運行穩(wěn)定;4)承壓能力好;5)抗腐蝕;6)節(jié)約成本,相同換熱要求下材料消耗小。目前對于微通道換熱器空氣側流動及換熱性能的研究,主要是考慮空氣流速對換熱性能的影響,或者考慮翅片的間距和結構尺寸對于換熱性能的影響,沒有從翅片開窗角度和翅片開窗數(shù)2個方面結合研究翅片對于微通道換熱器換熱性能的影響。創(chuàng)闊能源科技團隊研究計算流體力學方法對不同開窗角度和開窗數(shù)目的微通道換熱器空氣側流動及換熱進行分析,對比翅片結構參數(shù)對換熱和...
創(chuàng)闊科技的微通道換熱器是一種采用特殊微加工技術制造的換熱器。當量水力直徑通常小于1mm。該換熱器的特點是單位體積換熱量大,耐高壓,制造難度大。在微通道設計中,如果當量直徑過小時,可能需要關注微尺度效應。此時,傳統(tǒng)的宏觀理論公式不再適用于流動和傳熱。,我們將使用FLUENT制作一個簡單的微通道換熱器案例。當然,微通道換熱器的當量直徑足以通過解決NS方程來模擬。2模型和網(wǎng)格。由于實際換熱器單元較多,流道數(shù)量較大,本案按對稱面截取部分計算。換熱器長度60mm,寬度6mm,微通道高度mm,寬度1mm(當量直徑mm)。全六面網(wǎng)格劃分如下。網(wǎng)格節(jié)點總數(shù)為691096。3求解設置在這種情況下,我們假設介質在...
創(chuàng)闊科技使用的真空擴散焊是一種固態(tài)連接方法,是在一定溫度和壓力下使待焊表面發(fā)生微小的塑性變形實現(xiàn)大面積的緊密接觸,并經一定時間的保溫,通過接觸面間原子的互擴散及界面遷移從而實現(xiàn)零件的冶金結合。擴散焊大致可分為三個階段:第一階段為初始塑性變形階段。在高溫和壓力下,粗糙表面的微觀凸起首先接觸,并發(fā)生塑性變形,實際接觸面積增加,并伴隨表面附著層和氧化膜的破碎,使界面實現(xiàn)緊密接觸,形成大量金屬鍵,為原子的擴散提供條件。第二階段為界面原子的互擴散和遷移。在連接溫度下,原子處于較高的活躍狀態(tài),待焊表面變形形成的大量空位、位錯和晶格畸變等缺陷,使得原子擴散系數(shù)增加。此外,此階段還伴隨著再結晶的發(fā)生,以實現(xiàn)更...
創(chuàng)闊科技采用真空擴散焊接制造微通道換熱器,熱交換器作為熱管理系統(tǒng)關鍵裝備,小型化(緊湊化)、換熱效率高效化是當前該領域的主流發(fā)展方向,其使役性能方面的要求也日益嚴苛。這直接導致了熱交換器裝備在用材、加工、制造工藝等方面面臨極大的挑戰(zhàn)。以列管式換熱器為例,對于薄壁或超薄壁的換熱管,是以產品結構優(yōu)化使用分體機械加工再真空擴散焊接加工來完成,然而普通的換熱管極易發(fā)生溶蝕和燒穿,很難難焊并不不能焊。創(chuàng)闊科技團隊通過焊接材料成分體系的科學設計、焊接工藝制度的不斷優(yōu)化,機械加工的不斷更新,超薄壁換熱管的焊接難題可以得到有效的解決。創(chuàng)闊科技使用的真空擴散焊接的微通道換熱器,使用壽命長。朝陽區(qū)微通道換熱器廠家...
微反應器的應用領域范圍主要集中在以下方面:生產過程、能源與環(huán)境、化學研究工具、藥物開發(fā)和生物技術、分析應用等。1.什么是微反應器微反應器是一個比較廣闊的概念,且有很多種形式,既包括傳統(tǒng)的微量反應器(積分反應器),也包括反相膠束微反應器、聚合物微反應器、固體模板微反應器、微條紋反應器和微聚合反應器等。這些微反應器都有一個根本特點,那就是把化學反應控制在盡量微小的空間內,化學反應空間的尺寸數(shù)量級一般為微米甚至納米。而本文所指的微反應器具有上述反應器的共同特點,但又有所區(qū)別,主要是指用微加工技術制造的用于進行化學反應的三維結構元件或包括換熱、混合、分離、分析和控制等各種功能的高度集成的微反應系統(tǒng),通...
創(chuàng)闊科技換熱器有多種,以平板式換熱器為例?,F(xiàn)階段創(chuàng)闊科技的平板式換熱器制造工藝以真空擴散焊接加工,而釬焊方法因為服役環(huán)境對釬料的限制而存在很大的局限性,使用壽命有限,而真空擴散焊方法則可以有效地避免這一問題。但后者對工件的加工質量、表面狀態(tài)以及設備有著極高的要求。而且,更有甚者,隨著換熱器結構的緊湊化、小型化發(fā)展,真空擴散焊的技術優(yōu)勢進一步彰顯,但技術難度的加大也顯而易見。換熱器微通道的變形與界面結合率之間如何取得良好的平衡直接決定了真空擴散焊工藝的成敗。微通道換熱器創(chuàng)闊能源科技制作加工。海淀區(qū)不銹鋼微通道換熱器微通道換熱器因而國外有的學者將這一類型的微通道設備統(tǒng)稱為微反應器。微反應器還應與微...
創(chuàng)闊科技制作的微通道換熱器,采用真空擴散焊接方式,這種焊接優(yōu)點是沒有焊料,焊縫為母材本體,強度與母材相當,耐高溫、耐腐蝕取消了焊料厚度對產品尺寸的影響,相同尺寸下道層數(shù)更多,換熱性能更好:避免了焊接過程中焊料流動造成的流道堵塞和產生焊渣等多余物;變形量小,流道尺寸更接近理論尺寸,焊后外形較為美觀:焊縫熔點與母材相同,后期總裝。二次氫弧焊封頭、法蘭、支架等零件時對芯體焊縫影響較小。產品不易泄漏,可靠性較高。高效液冷換熱器,多結構多介質換熱器,設計加工找創(chuàng)闊能源科技。南京緊湊型多結構微通道換熱器微通道換熱器創(chuàng)闊科技的微通道尺寸小,流體在微通道中的流動為層流狀態(tài),為了在層流狀態(tài)下提高微混合器的混合效...