2020年,臨研所、病理科和科研處邀請北京大學王愛民副教授做了題目為“新一代微型雙光子顯微成像系統(tǒng)介紹及其在臨床醫(yī)療診斷”的學術(shù)報告。學術(shù)報告由臨研所醫(yī)學實驗研究平臺潘琳老師主持。王愛民,北京大學信息科學技術(shù)學院副教授,畢業(yè)于北京大學物理系,獲學士、碩士學位,后于英國巴斯大學物理系獲博士學位。該研究組研發(fā)的微型雙光子顯微鏡,第1次在國際上獲得了小鼠大腦神經(jīng)元和神經(jīng)突觸清晰穩(wěn)定的動態(tài)信號,該成果獲得了2017年度“中國光學進展”和“中國科學進展”,并被NatureMethods評為2018年度“年度方法--無限制行為動物成像”。目前,該研究組正在研究新一代雙光子顯微成像技術(shù)在臨床診斷中的應(yīng)用,為未來即時病理、離體組織檢測、術(shù)中診斷等提供新的影像手段和分析方法。雙光子顯微鏡的原理是什么?美國ultimainvestigator雙光子顯微鏡應(yīng)用是什么
臨研所、病理科和科研處邀請北京大學王愛民副教授在2020年12月22日做了題目為“新一代微型雙光子顯微成像系統(tǒng)介紹及其在臨床醫(yī)療診斷”的學術(shù)報告。學術(shù)報告由臨研所醫(yī)學實驗研究平臺潘琳老師主持。王愛民,北京大學信息科學技術(shù)學院副教授,畢業(yè)于北京大學物理系,獲學士、碩士學位,后于英國巴斯大學物理系獲博士學位。該研究組研發(fā)的微型雙光子顯微鏡,第1次在國際上獲得了小鼠大腦神經(jīng)元和神經(jīng)突觸清晰穩(wěn)定的動態(tài)信號,該成果獲得了2017年度“中國光學進展”和“中國科學進展”,并被NatureMethods評為2018年度“年度方法--無限制行為動物成像”。目前,該研究組正在研究新一代雙光子顯微成像技術(shù)在臨床診斷中的應(yīng)用,為未來即時病理、離體組織檢測、術(shù)中診斷等提供新型的影像手段和分析方法。美國ultimainvestigator雙光子顯微鏡應(yīng)用是什么雙光子顯微鏡有這么多優(yōu)點,那么雙光子顯微鏡有哪些應(yīng)用呢?
新一代微型化雙光子熒光顯微鏡體積小,重只2.2克,適于佩戴在小動物頭部顱窗上,實時記錄數(shù)十個神經(jīng)元、上千個神經(jīng)突觸的動態(tài)信號。在大型動物上,還可望實現(xiàn)多探頭佩戴、多顱窗不同腦區(qū)的長時程觀測。相比單光子激發(fā),雙光子激發(fā)具有良好的光學斷層、更深的生物組織穿透等優(yōu)勢,其橫向分辨率達到0.65μm,成像質(zhì)量與商品化大型臺式雙光子熒光顯微鏡可相媲美,遠優(yōu)于目前領(lǐng)域內(nèi)主導(dǎo)的、美國腦科學計劃重要團隊所研發(fā)的微型化寬場顯微鏡。采用雙軸對稱高速微機電系統(tǒng)轉(zhuǎn)鏡掃描技術(shù),成像幀頻已達40Hz(256*256像素),同時具備多區(qū)域隨機掃描和每秒1萬線的線掃描能力。此外,采用自主設(shè)計可傳導(dǎo)920nm飛秒激光的光子晶體光纖,該系統(tǒng)實現(xiàn)了微型雙光子顯微鏡對腦科學領(lǐng)域較廣泛應(yīng)用的指示神經(jīng)元活動的熒光探針(如GCaMP6)的有效利用。同時采用柔性光纖束進行熒光信號的接收,解決了動物的活動和行為由于熒光傳輸光纜拖拽而受到干擾的難題。未來,與光遺傳學技術(shù)的結(jié)合,可望在結(jié)構(gòu)與功能成像的同時,精細地操控神經(jīng)元和神經(jīng)回路的活動。
基因編碼的熒光探針可用于在突觸和細胞分辨率下監(jiān)測體內(nèi)神經(jīng)元信號,這是揭示動物神經(jīng)活動復(fù)雜機制的關(guān)鍵。雙光子顯微鏡(2PM)可以對鈣離子傳感器和谷氨酸傳感器進行亞細胞分辨率的成像,從而測量不透明腦深部的活動。成像膜的電壓變化可以直接反映神經(jīng)元的活動,但神經(jīng)元活動的速度對于常規(guī)的2PM來說太快了。目前,電壓成像主要由寬視場顯微鏡實現(xiàn),但其空間分辨率較差,且只能在淺深度成像。因此,為了以高空間分辨率成像不透明腦中膜電壓的變化,需要將成像速率提高2PM。面向模塊輸出端的子脈沖序列可視為從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成空間分離和時間延遲的聚焦陣列。然后,該模塊被集成到一個帶有高速數(shù)據(jù)采集系統(tǒng)的標準雙光子熒光顯微鏡中,如圖2所示。光源是重復(fù)頻率為1MHz的920nm激光器。FACED模塊可以產(chǎn)生80個脈沖焦點,脈沖時間間隔為2ns。這些焦點是虛擬源的圖像。虛光源越遠,物鏡處的光束尺寸越大,焦點越小。光束可以沿Y軸比沿X軸更好地填充物鏡,從而在X軸上產(chǎn)生0.82m和0.35m的橫向分辨率。雙光子顯微鏡在生物醫(yī)學研究中有廣泛的應(yīng)用,可以觀察細胞內(nèi)的亞細胞結(jié)構(gòu)、蛋白質(zhì)分布、細胞活動等。
與普通顯微鏡相比,電子顯微鏡可以在更小的尺度上觀察事物,冷凍電子顯微鏡可以觀察活性生物大分子。雙光子顯微鏡有什么優(yōu)勢?它能做普通光學顯微鏡做不到的事情嗎?原來雙光子顯微鏡可以準確穿透厚標本進行定點和***觀察!因為電磁波的波長越短,粒子越強,散射的影響越大。雙光子顯微鏡將激發(fā)光源改為長波長激光,增加了激光的穿透力,同時降低了對細胞的毒性。此外,由于雙光子激發(fā)效應(yīng)只能發(fā)生在物鏡的焦點處,因此掃描精度極高,還可以提高激發(fā)光效率,減少掃描點以外的熒光物質(zhì)的消耗。雙光子顯微鏡不需要共聚焦細孔,提高了熒光檢測效率。進口激光雙光子顯微鏡熒光探測
成像平臺倒置雙光子顯微鏡啟用顯微鏡自帶調(diào)焦設(shè)備。美國ultimainvestigator雙光子顯微鏡應(yīng)用是什么
隨著技術(shù)的發(fā)展,雙光子顯微鏡的性能不斷優(yōu)化。結(jié)合其特點,大致可以分為兩個方面:深入和主動改進。為了使激發(fā)激光進入更深的層次,可以從器件優(yōu)化和標本改造兩個方面入手。關(guān)于器件的優(yōu)化,我們可以把激光束做得更細,集中能量,讓激光穿透得更深。對于樣品,物質(zhì)的吸收和散射是影響光傳播的主要因素。為了解決這個問題,我們需要將樣本透明化。一種方法是用某種物質(zhì)浸泡標本,使其中的物質(zhì)(主要是脂質(zhì))被破壞或溶解。另一種方法是通過電泳電解脂類,從而提高標本的“透明度”。美國ultimainvestigator雙光子顯微鏡應(yīng)用是什么