調(diào)頻連續(xù)波FMCW激光雷達(dá),以三角波調(diào)頻連續(xù)波為例來介紹其測距/測速原理。藍(lán)色為發(fā)射信號頻率,紅色為接收信號頻率,發(fā)射的激光束被反復(fù)調(diào)制,信號頻率不斷變化。激光束擊中障礙物被反射,反射會影響光的頻率,當(dāng)反射光返回到檢測器,與發(fā)射時的頻率相比,就能測量兩種頻率之間的差值,與距離成比例,從而計算出物體的位置信息。FMCW的反射光頻率會根據(jù)前方移動物體的速度而改變,結(jié)合多普勒效應(yīng),即可計算出目標(biāo)的速度。優(yōu)點:每個像素都有多普勒信息,含速度信息;解決Lidar間串?dāng)_問題;不受環(huán)境光影響,探測靈敏度高;缺點:不能探測切向運動目標(biāo)。采用主動抗串?dāng)_設(shè)計,覽沃 Mid - 360 在多雷達(dá)環(huán)境下穩(wěn)定運行互不干擾。無人駕駛激光雷達(dá)制造
激光雷達(dá)是20世紀(jì)60年代初次提出的一項技術(shù), 隨著應(yīng)用的普遍,在過去的幾年里,激光雷達(dá)經(jīng)歷了一輪新的繁榮進(jìn)步和多行業(yè)使用,已迅速成為自動駕駛、無人機(jī)巡查、工業(yè)自動化等領(lǐng)域的關(guān)鍵技術(shù)。截至目前,我們已推出了好幾款激光雷達(dá)AS系列產(chǎn)品,涵蓋避障型、導(dǎo)航型以及導(dǎo)航避障一體型;具有測量精度高、掃描速度快、抗干擾能力強(qiáng)、體積小、重量輕、可靠性高等優(yōu)勢,是工業(yè)AGV、移動機(jī)器人、低速機(jī)器人的理想選擇。每一種傳感器基于各自的性能特點,都有其適合的應(yīng)用場景。在實際特殊環(huán)境應(yīng)用中,激光雷達(dá)也有著一些使用小技巧。深圳傲覽Avia激光雷達(dá)渠道倉儲管理運用激光雷達(dá)清點庫存,提高貨物盤點效率。
測距準(zhǔn)度:激光雷達(dá)探測得到距離數(shù)據(jù)與真值之間的差距,準(zhǔn)度越高表示測量結(jié)果與真實數(shù)據(jù)符合程度越高。點頻:激光雷達(dá)每秒完成探測并獲取的探測點的數(shù)目??垢蓴_:激光雷達(dá)對工作同一環(huán)境下、采用相同激光波段的其他激光雷達(dá)的干擾信號的抵抗能力,抗干擾能力越強(qiáng)說明在多臺激光雷達(dá)共同工作的條件下產(chǎn)生的噪點率越低功耗:激光雷達(dá)系統(tǒng)工作狀態(tài)下所消耗的電功率。激光雷達(dá)線數(shù):一般指激光雷達(dá)垂直方向上的測量線的數(shù)量,對于一定的角度范圍,線數(shù)越多表示角度分辨率越高,對目標(biāo)物的細(xì)節(jié)分辨能力越強(qiáng)。
NDT 算法的基本思想是先根據(jù)參考數(shù)據(jù)(reference scan)來構(gòu)建多維變量的正態(tài)分布,如果變換參數(shù)能使得兩幅激光數(shù)據(jù)匹配的很好,那么變換點在參考系中的概率密度將會很大。然后利用優(yōu)化的方法求出使得概率密度之和較大的變換參數(shù),此時兩幅激光點云數(shù)據(jù)將匹配的較好。由此得到位資變換關(guān)系。局部特征提取通常包括關(guān)鍵點檢測和局部特征描述兩個步驟,其構(gòu)成了三維模型重建與目標(biāo)識別的基礎(chǔ)和關(guān)鍵。在二維圖像領(lǐng)域,基于局部特征的算法已在過去十多年間取得了大量成果并在圖像檢索、目標(biāo)識別、全景拼接、無人系統(tǒng)導(dǎo)航、圖像數(shù)據(jù)挖掘等領(lǐng)域得到了成功應(yīng)用。類似的,點云局部特征提取在近年來亦取得了部分進(jìn)展激光雷達(dá)數(shù)據(jù)對于城市規(guī)劃和建筑設(shè)計具有重要意義。
激光雷達(dá)結(jié)構(gòu),激光雷達(dá)的關(guān)鍵部件按照信號處理的信號鏈包括控制硬件DSP(數(shù)字信號處理器)、激光驅(qū)動、激光發(fā)射發(fā)光二極管、發(fā)射光學(xué)鏡頭、接收光學(xué)鏡頭、APD(雪崩光學(xué)二極管)、TIA(可變跨導(dǎo)放大器)和探測器,如下圖所示。其中除了發(fā)射和接收光學(xué)鏡頭外,都是電子部件。隨著半導(dǎo)體技術(shù)的快速演進(jìn),性能逐步提升的同時成本迅速降低。但是光學(xué)組件和旋轉(zhuǎn)機(jī)械則占具了激光雷達(dá)的大部分成本。激光雷達(dá)的種類,把激光雷達(dá)按照掃描方式來分類,目前有機(jī)械式激光雷達(dá)、半固態(tài)激光雷達(dá)和固態(tài)激光雷達(dá)三大類。其中機(jī)械式激光雷達(dá)較為常用,固態(tài)激光雷達(dá)為未來業(yè)界大力發(fā)展方向,半固態(tài)激光雷達(dá)是機(jī)械式和純固態(tài)式的折中方案,屬于目前階段量產(chǎn)裝車的主力軍。建筑行業(yè)內(nèi)激光雷達(dá)快速掃描建模,輔助設(shè)計與施工。安防激光雷達(dá)供應(yīng)商
激光雷達(dá)的設(shè)計優(yōu)化提高了其在復(fù)雜環(huán)境中的可靠性。無人駕駛激光雷達(dá)制造
LiDAR的數(shù)據(jù),三維點,對于旋轉(zhuǎn)式激光雷達(dá)來說,得到的三維點便是一個很好的極坐標(biāo)系下的多個點的觀測,包含激光發(fā)射器的垂直俯仰角,發(fā)射器的水平旋轉(zhuǎn)角度,根據(jù)激光回波時間計算得到的距離。但 LiDAR 通常會輸出笛卡爾坐標(biāo)系下的觀測值,頭一是因為 LiDAR 在極坐標(biāo)系下測量效率高,也只是對于旋轉(zhuǎn)式 LiDAR,目前陣列式 LiDAR 也有很多。第二笛卡爾坐標(biāo)系更加直觀,投影和旋轉(zhuǎn)平移更加簡潔,求解法向量,曲率,頂點等特征計算量小,點云的索引及搜索都更加高效。對于 MEMS 式激光雷達(dá),由于一次采樣周期為一個偏振鏡旋轉(zhuǎn)周期,10hz 下采樣周期為 0.1 秒,但由于載體本身在進(jìn)行高速移動時,我們需要對得到的數(shù)據(jù)進(jìn)行消除運動畸變,來補(bǔ)償采樣周期內(nèi)的運動。無人駕駛激光雷達(dá)制造